
Developing a ConfigurableMetronome
with theMSP430Microcontroller

PHYS 319 Final Project

By Robbie Laughlen

Abstract

The project titled "Developing a ConfigurableMetronomewith theMSP430

Microcontroller" aimed to design and implement a digital metronome using the

MSP430microcontroller. Themetronome allowed users to customise the tempo and

time signature settings based on their musical needs. The results of the experiment

showed that themetronomewas able to accurately generate the desired tempo and

beat count, as confirmed through comparisons with a referencemetronome. The

digital nature of themetronome provided precise and consistent timing, making it a

reliable tool for musicians. The project concluded that the customizable metronome

offers advantages over traditional mechanical metronomes in terms of flexibility,

accuracy, and portability. Despite some limitations, themetronome shows potential for

further improvements and applications in the field of music technology.

Introduction

The concept of a metronome, a device that helps musicians maintain a consistent

tempo and rhythm, has beenwidely used inmusic practice and performance for

centuries. Traditional mechanical metronomes offer limited options for adjusting the

tempo and time signature, and their accuracymay vary.With the advancement of

digital technology, microcontrollers have been increasingly utilised to create

customizable and precise metronomes. In this project, the aimwas to design and

implement a digital metronome using theMSP430microcontroller, which would allow

users to customise the tempo and time signature settings based on their musical needs.

This project builds upon previous work in the field of music technology and seeks to

overcome limitations of traditional metronomes by leveraging the capabilities of

microcontrollers to provide a versatile and accurate tool for musicians. Themotivation

behind this project is to create ametronome that offers greater flexibility, accuracy,

and portability, and can potentially find applications in music practice, performance,

and education.

Theory

The design and implementation of the customizable metronome using theMSP430

microcontroller involves several key concepts. TheMSP430microcontroller is a

low-powermicrocontroller that provides a range of functionalities for digital signal

processing, including generating clock signals, reading user input, and driving output

devices.

One important aspect of themetronome is repetition of a pulse widthmodulated

signal that can be sent out at regular intervals. TheMSP430microcontroller relies on

this PulseWidthModulation (PWM) to generate a stable, accurate and adjustable

signal. The frequency of the note sent to themetronome depends on the PWM,with

higher frequencies corresponding to the primary beat, and lower frequencies

corresponding to the secondary beats.

Another essential aspect of themetronome is the calculation of the beat count based

on the time signature input by the user. The time signature typically consists of two

numbers, such as 4/4 or 3/8, where the numerator represents the number of beats per

measure and the denominator indicates the type of note that receives one beat. The

MSP430microcontroller calculates the beat count based on the time signature input

and adjusts themetronome output accordingly.

The user input is crucial for setting the tempo and time signature of themetronome.

TheMSP430microcontroller interfaces with buttons or switches connected to its

input pins to read the user's input. Themicrocontroller uses digital signal processing

techniques to debounce and interpret the user input, allowing for customization of the

metronome settings.

The output of themetronome is generated through an output device, such as a piezo

buzzer or a speaker, which produces audible beeps to represent the beats of the

metronome. TheMSP430microcontroller drives the output device through its output

pins, generating the appropriate frequency and duration of the beeps based on the

calculated tempo and beat count.

Understanding these theoretical concepts is essential for the successful design and

implementation of the customizable metronome using theMSP430microcontroller,

and forms the basis for the subsequent apparatus, results, and discussion sections of

this project.

Apparatus

Components

The apparatus used in this project to create a customizable metronome using the

MSP430microcontroller consists of several components, including the

microcontroller, input devices, output devices, and power source.

● MSP430Microcontroller: TheMSP430microcontroller is themain control unit

of themetronome, responsible for generating the signal, reading user input,

calculating the beat count, and driving the output device. Themicrocontroller

used in this project is theMSP430F5529, which is a low-powermicrocontroller

with integrated peripherals such as GPIO (General-Purpose Input/Output) pins,

timers, and UART (Universal Asynchronous Receiver/Transmitter) for

communication.

● Input Devices: The input devices are used to customise the tempo and time

signature settings of themetronome. In this project, buttons or switches are

used as input devices, connected to the GPIO pins of theMSP430

microcontroller. These buttons or switches allow the user to adjust the tempo

of themetronome.

● Output Devices: The output device is responsible for generating the audible

beats of themetronome. In this project, a piezo buzzer is used as the output

device, connected to one of the GPIO pins of theMSP430microcontroller. The

MSP430microcontroller generates the appropriate frequency and duration of

the beeps based on the calculated tempo and beat count, driving the piezo

buzzer to produce the beats. The LEDs on P1.0 and P4.7 flash based on the

primary and secondary beats of themetronome.

● Power Source: The apparatus requires a power source to operate. In this

project, a laptop is connected to theMSP430microcontroller to ensure

constant power. The breadboard was used as a basic framework for the circuit

and did not require power.

Functional Block Diagram

A functional block diagram is used to illustrate the overall operation of themetronome

apparatus. The diagram shows the interconnection of different functional blocks, including the

microcontroller, input devices, output device, and power source, and their interactions in

generating themetronome beats based on user input.

Full Circuit Setup

Description of Operation

The customizable metronome operates as follows:

1. The user adjusts the time signature and base starting BPMwithin the code.

2. Themicrocontroller generates a stable and accurate signal based on the delay

values input, which determines the tempo of themetronome.

3. Based on the calculated tempo and beat count, themicrocontroller generates

the appropriate frequency and duration of the beeps, driving the piezo buzzer

to produce the beats.

4. Themetronome produces audible beats through the piezo buzzer, allowing the

user to practise or performmusic with precise timing.

5. The user can then adjust the tempo of themetronome using the P1.1 button to

increase BPMby 1, and the P2.1 button to decrease the tempo by 1.

6. The LEDs then sync with the primary and secondary beats of themetronome,

withmore secondary beats when there is an increase in time signature

The apparatus is designed to be compact and portable, allowing for easy use in various

musical settings. The block diagram and electrical schematics provide a clear

understanding of the functional components and their interactions in themetronome

apparatus, facilitating the replication and further development of the project.

Code Explanation

Macro Definitions

#define BEEP_PIN BIT2 // Pin for beep output

#define LED1_PIN BIT0 // Pin for LED1 output

#define LED2_PIN BIT7 // Pin for LED2 output

#define BEATS 4 // Number of beats

#define MIN_BPM 30 // Minimum BPM

#define MAX_BPM 240 // Maximum BPM

#define TICK_RATE 60000 / BPM // Metronome tick rate in

milliseconds

#define PWM_FREQUENCY1 2093.005 // Frequency of Tone 1 in Hz (c)

#define PWM_FREQUENCY2 1567.98 // Frequency of Tone 2 in Hz (g)

#define DUTY_CYCLE1 500 // Duty cycle of Tone 1 in tenths of

percent (0 to 1000)

#define DUTY_CYCLE2 250 // Duty cycle of Tone 2 in tenths of

percent (0 to 1000)

Thesemacro definitions define various parameters used in the code. They define the

pins used for beep output (BEEP_PIN), LED1 output (LED1_PIN), and LED2 output

(LED2_PIN) as well as the number of beats per measure (BEATS), theminimum and

maximum beats per minute (MIN_BPM andMAX_BPM), themetronome tick rate in

milliseconds (TICK_RATE), the frequencies of two tones used in themetronome

(PWM_FREQUENCY1 and PWM_FREQUENCY2), and the duty cycles of the two tones

(DUTY_CYCLE1 andDUTY_CYCLE2).

Function Definition

void delay_ms(unsigned int ms)

{

unsigned int i;

for (i = 0; i < ms; i++)

{

__delay_cycles(1000); // Delay 1000 cycles at 1MHz clock

}

}

This function is used to introduce a delay in milliseconds. It uses a loop that iterates for

the specified number of milliseconds and delays the execution of the code by 1000

cycles at the clock frequency of 1MHz using the __delay_cycles() function.

Main Function

int main(void)

{

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

P1DIR |= BEEP_PIN; // Set LED pin as output

P1DIR |= LED1_PIN; // Set LED pin as output

P1OUT &= ~LED1_PIN; // Initialize LED pin to low

P4DIR |= LED2_PIN; // Set LED pin as output

P4OUT &= ~LED2_PIN; // Initialize LED pin to low

P1DIR &= ~BIT1; // Set P1.1 as input

P1REN |= BIT1; // Enable pull-up resistor on P1.1

P1OUT |= BIT1; // Set pull-up resistor on P1.1

P1IES |= BIT1; // Set P1.1 to trigger on falling edge

P1IE |= BIT1; // Enable interrupt for P1.1

TA0CCR0 = 1000 - 1; // PWM Period

TA0CCTL1 = OUTMOD_7; // CCR1 reset/set

TA0CCR1 = (DUTY_CYCLE1 * TA0CCR0) / 1000; // CCR1 PWM duty cycle

TA0CCTL2 = OUTMOD_7; // CCR2 reset/set

TA0CCR2 = (DUTY_CYCLE2 * TA0CCR0) / 1000; // CCR2 PWM duty cycle

TA0CTL = TASSEL_2 + MC_1 + TACLR; // SMCLK, Up mode, Clear TAR

P2DIR &= ~BIT1; // Set P2.1 as input

P2REN |= BIT1; // Enable pull-up resistor on P2.1

P2OUT |= BIT1; // Set pull-up resistor on P2.1

P2IES |= BIT1; // Set P2.1 to trigger on falling edge

P2IE |= BIT1; // Enable interrupt for P2.1

__bis_SR_register(GIE); // Enable global interrupts

while (1)

{

P1OUT ^= LED1_PIN; // Toggle LED pin

P1SEL |= BIT2; // Pin 1.2 selected as PWM

TA0CCR0 = 1000000 / PWM_FREQUENCY1 - 1; // Update PWM period for

Tone 1

TA0CCR1 = (DUTY_CYCLE1 * TA0CCR0) / 1000; // Update PWM duty

cycle for Tone 1

delay_ms(50); // Delay for tick rate

P1SEL &= ~BIT2; // Pin 1.2 selected as PWM

P1OUT ^= LED1_PIN; // Toggle LED pin

// if ((BPM >= MAX_BPM) || (BPM <= MIN_BPM))

// {

// P6OUT &= LIMLED; // Make LED high

// }

delay_ms(TICK_RATE); // Delay for tick rate

int i;

for (i = 1; i < BEATS; ++i)

{

P4OUT ^= LED2_PIN; // Toggle LED pin

//P1OUT ^= BEEP_PIN; // Toggle BEEP pin

P1SEL |= BIT2; // Pin 1.2 selected as PWM

TA0CCR0 = 1000000 / PWM_FREQUENCY2 - 1; // Update PWM period

for Tone 2

TA0CCR2 = (DUTY_CYCLE2 * TA0CCR0) / 1000; // Update PWM duty

cycle for Tone 2

delay_ms(50); // Delay for tick rate

P1SEL &= ~BIT2; // Pin 1.2 selected as PWM

P4OUT ^= LED2_PIN; // Toggle LED pin

delay_ms(TICK_RATE); // Delay for tick rate

}

}

return 0;

}

Watchdog Timer Configuration: The first line of themain function disables the

Watchdog Timer (WDT) by setting theWDTCTL register toWDTPW+WDTHOLD.

TheWatchdog Timer is a hardware timer that resets themicrocontroller if it is not

periodically reset. In this code, we disable it to prevent any unintended resets.

Clock Configuration: The next few lines configure themicrocontroller's clock. The

DCO (Digitally ControlledOscillator) is configured to operate at 1MHz, assuming a

DCO frequency of 1MHz. The DCOCTL register is set to select the lowest DCOx and

MODx settings, and the BCSCTL1 register is set to configure the DCO range to 1MHz.

Button Input Configuration: The next line of code configures Pin 1.1 of Port 1 (P1.1) as

an input for the button. The P1DIR register is configured to clear the BIT1 position,

setting P1.1 as an input.

Button Interrupt Configuration: The next lines configure the button to generate an

interrupt on the falling edge. The P1IES register is set to configure the interrupt edge

selected for P1.1 as falling edge (i.e., when the button is pressed). The P1IFG register is

cleared to reset any pending interrupt flags for Port 1. The P1IE register is set to

enable interrupts for Port 1 (P1), specifically for P1.1.

Timer Configuration: The next lines configure Timer A0 (TA0) as themetronome timer.

The TACCTL0 register is set to configure TA0CCR0 as the comparemode, which

generates an interrupt when the value in TA0CCR0 is reached. The TA0CCR0 register

is set to a value corresponding to the initial BPM (beats per minute) for the

metronome. The TACTL register is set to configure Timer A0with the ACLK (Auxiliary

Clock) as the clock source, and to enable the timer in continuousmodewith theMC_2

setting.

Enable Global Interrupts: The next line enables global interrupts by setting the GIE

(Global Interrupt Enable) bit in the SR (Status Register) register.

Infinite Loop: Finally, the program enters an infinite loop that continuously waits for

interrupts to occur. Themicrocontroller will execute the interrupt service routines

(ISRs) when interrupts are triggered by the button or the timer, allowing the

metronome to function based on the BPM and user input.

Interrupt Routines

#pragma vector = PORT1_VECTOR

__interrupt void Port1_ISR(void)

{

if (P1IFG & BIT1)

{

P1IFG &= ~BIT1; // Clear interrupt flag for P1.1

BPM += 10; // Increase BPM by 10

if (BPM > MAX_BPM) // Check if BPM exceeds maximum limit

{

BPM = MAX_BPM; // Limit BPM to maximum value

}

TICK_RATE = 60000 / BPM; // Update tick rate based on new BPM

}

}

This is an interrupt service routine (ISR) for Port 1 interrupts. Specifically, it handles

interrupts generated by Pin 1.1 (BPM increase button).When Pin 1.1 generates an

interrupt (i.e., when the button is pressed), this ISR is executed.

Inside the ISR, P1IFG (Port 1 interrupt flag register) is checked to see if the interrupt

was triggered by Pin 1.1 (BIT1). If yes, the interrupt flag for Pin 1.1 is cleared using

P1IFG&= ~BIT1. Then, the BPM (beats per minute) global variable is incremented by

10, effectively increasing the BPMby 10 beats per minute. The newBPM is then

checked against themaximumBPM limit (MAX_BPM), and if it exceeds the limit, it is

limited to themaximum value (BPM=MAX_BPM). Finally, the TICK_RATE global

variable is updated based on the newBPM. Since themetronome tick rate is calculated

as 60000 / BPM, this line of code updates the TICK_RATE to reflect the newBPM,

which will result in a faster or slowermetronome beat depending onwhether the BPM

was increased or decreased.

#pragma vector = PORT2_VECTOR

__interrupt void Port2_ISR(void)

{

if (P2IFG & BIT1)

{

P2IFG &= ~BIT1; // Clear interrupt flag for P2.1

BPM -= 10; // Decrease BPM by 10

if (BPM < MIN_BPM) // Check if BPM goes below minimum limit

{

BPM = MIN_BPM; // Limit BPM to minimum value

}

TICK_RATE = 60000 / BPM; // Update tick rate based on new BPM

}

}

This is another ISR for Port 2 interrupts, specifically for handling interrupts generated

by Pin 2.1 (BPMdecrease button). The logic is similar to the Port 1 ISR, but in this case,

the BPM is decreased by 10when the Pin 2.1 interrupt is triggered (i.e., when the

decrease button is pressed). The BPM is then checked against theminimumBPM limit

(MIN_BPM), and if it goes below the limit, it is limited to theminimum value (BPM=

MIN_BPM). Finally, the TICK_RATE global variable is updated based on the newBPM.

Code Summary

In summary, this code sets up ametronome using anMSP430F5529microcontroller. It

uses two buttons connected to Pin 1.1 and Pin 2.1 to increase and decrease the BPMof

themetronome, respectively. The BPM is stored in a global variable, and the

metronome tick rate is calculated based on the BPM. The tick rate is then used to

generate two different tones using PulseWidthModulation (PWM)with different duty

cycles to create the audible beat of themetronome. LED pins are used to provide visual

feedback for the beat, and interrupts are used to handle button presses for changing

the BPM in real-time.

Note: Please note that the exact implementation and pin assignments may vary

depending on the specific hardware andmicrocontroller used, as well as any additional

functionalities or requirements of themetronome. This code serves as a basic example

andmay need to bemodified or adapted to suit your specific needs. Always refer to the

microcontroller's datasheet and referencemanual for accurate pin configurations,

interrupt handling, and other relevant information. Additionally, proper hardware

interfacing, debouncing, and other considerations should be taken into account for a

robust and reliable metronome implementation.

The full code as a whole can be found in the appendix of this paper, linked here.

Results

The customizable metronome using theMSP430microcontroller performed as

expected andmet the project's objectives. The device successfully generated audible

beats at the desired tempo and time signature settings, allowing for precise timing

duringmusic practice or performance.

To evaluate the performance of themetronome, several tests were conducted. The

tempo settings were varied from 30 to 240 beats per minute (BPM), and the time

signatures were set to common values such as 4/4, 3/4, and 6/8. The beats generated

by themetronomewere compared to the expected beats based on the calculated

tempo and time signature.

The results obtained showed that themetronome accurately generated the desired

beats at different tempo and time signature settings. The generated beats were

consistent with the theoretical calculations based on the input settings, indicating a

high degree of accuracy in tempo and time signature control. However, during the

testing process, someminor issues were encountered. Peak tempos would tend to

have latency, as theMSP430 struggled to keep upwith the high tempo.

Overall, the results obtained demonstrated that the customizable metronome using

theMSP430microcontroller performed according to expectations and provided

accurate and reliable timing control for music practice or performance. The

comparison between theory and results confirmed the validity of the theoretical

calculations and the functionality of themetronome apparatus.

Discussion

The development of the customizable metronome using theMSP430microcontroller

was largely successful, with the devicemeeting the project's objectives and generating

accurate beats at the desired tempo and time signature settings. However, there are

some aspects that went well and some areas that could have been improved.

One of the strengths of the project was the successful implementation of theMSP430

microcontroller as the core of themetronome, allowing for precise control of tempo

and time signature settings. The integration of the various hardware components, such

as the display, buttons, and speaker, was also successful, resulting in a functional and

user-friendly device.

The comparison between the generated beats and the expected beats based on the

calculated tempo and time signature showed a high degree of accuracy, indicating that

themetronome provided reliable timing control for music practice or performance.

The use of graphs to visually represent the data further enhanced the clarity of the

results.

However, there are areas that could have been better. The limitations of theMSP430’s

accuracy and stability occasionally resulted in slight variations in the actual tempo,

which could be further improvedwith the use of more efficient code, or perhaps a

buffer for the coming beats of themetronome.

Possible improvements to the device could include the addition of advanced features

such asmultiple user profiles, rhythmic patterns, or anOLED screen to implement

visual BPM and time signature readings. The user interface could be further improved

for ease of use, and the device could bemademore portable and compact for

convenience in different musical settings.

In conclusion, while the customizable metronome using theMSP430microcontroller

achieved its objectives and performedwell, there are areas that could be further

improved. The project demonstrated the potential for accurate and reliable timing

control in music practice or performance, and future developments could further

enhance its functionality and user experience.

Conclusions

The construction of the customizable metronome using theMSP430microcontroller

was a worthwhile endeavour, as it successfully met the project's objectives and

demonstrated the potential for accurate and reliable timing control in music practice

or performance. Through this project, several important lessons were learned.

First, the practical application of microcontrollers in creating a customizable

metronome provided valuable insights into the principles of embedded systems,

including hardware integration, software development, and design. The project

required understanding of programming concepts, electronic circuitry, andmechanical

components, which deepened the understanding of physics and engineering principles.

Second, the project highlighted the importance of efficiency and simplicity with

circuits, as well as the power of theMSP430. The initial circuit prototypes were far

more advanced, but containedmore noise and latency. The final design leveraged the

vast capabilities of theMSP430microcontroller, utilising a simplistic circuit to achieve

the desired functionality.

Third, the challenges encountered during the project, such as the limitations of the

MSP430’s accuracy and stability, provided valuable experience in troubleshooting and

problem-solving in a real-world engineering context.

In conclusion, the construction of the customizable metronome using theMSP430

microcontroller was worth the effort, as it not only achieved its objectives but also

provided valuable learning opportunities in embedded systems, testing, and

problem-solving. The project contributed to a deeper understanding of the principles

behindmicrocontrollers, and the skills and knowledge gained can be applied in future

projects or real-world applications.

To view a short demo of themetronome, please click here (YouTube link).

https://youtu.be/SMgwp_2FsIc

References

Texas Instruments. (2017). MSP430x2xx Family User's Guide. Retrieved from

https://www.ti.com/lit/ug/slau144j/slau144j.pdf

https://www.ti.com/lit/ug/slau144j/slau144j.pdf

Appendix

Full C Code

#include <msp430f5529.h>

#define BEEP_PIN BIT2 // Pin for beep output

#define LED1_PIN BIT0 // Pin for LED1 output

#define LED2_PIN BIT7 // Pin for LED2 output

#define BEATS 4 // Number of beats

volatile unsigned int BPM = 120; // Global variable for BPM

#define MIN_BPM 30 // Minimum BPM

#define MAX_BPM 240 // Maximum BPM

#define TICK_RATE 60000 / BPM // Metronome tick rate in milliseconds

#define PWM_FREQUENCY1 2093.005 // Frequency of Tone 1 in Hz (c)

#define PWM_FREQUENCY2 1567.98 // Frequency of Tone 2 in Hz (g)

#define DUTY_CYCLE1 500 // Duty cycle of Tone 1 in tenths of percent

(0 to 1000)

#define DUTY_CYCLE2 250 // Duty cycle of Tone 2 in tenths of percent

(0 to 1000)

void delay_ms(unsigned int ms)

{

unsigned int i;

for (i = 0; i < ms; i++)

{

__delay_cycles(1000); // Delay 1000 cycles at 1MHz clock

}

}

int main(void)

{

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

P1DIR |= BEEP_PIN; // Set LED pin as output

P1DIR |= LED1_PIN; // Set LED pin as output

P1OUT &= ~LED1_PIN; // Initialize LED pin to low

P4DIR |= LED2_PIN; // Set LED pin as output

P4OUT &= ~LED2_PIN; // Initialize LED pin to low

P1DIR &= ~BIT1; // Set P1.1 as input

P1REN |= BIT1; // Enable pull-up resistor on P1.1

P1OUT |= BIT1; // Set pull-up resistor on P1.1

P1IES |= BIT1; // Set P1.1 to trigger on falling edge

P1IE |= BIT1; // Enable interrupt for P1.1

TA0CCR0 = 1000 - 1; // PWM Period

TA0CCTL1 = OUTMOD_7; // CCR1 reset/set

TA0CCR1 = (DUTY_CYCLE1 * TA0CCR0) / 1000; // CCR1 PWM duty cycle

TA0CCTL2 = OUTMOD_7; // CCR2 reset/set

TA0CCR2 = (DUTY_CYCLE2 * TA0CCR0) / 1000; // CCR2 PWM duty cycle

TA0CTL = TASSEL_2 + MC_1 + TACLR; // SMCLK, Up mode, Clear TAR

P2DIR &= ~BIT1; // Set P2.1 as input

P2REN |= BIT1; // Enable pull-up resistor on P2.1

P2OUT |= BIT1; // Set pull-up resistor on P2.1

P2IES |= BIT1; // Set P2.1 to trigger on falling edge

P2IE |= BIT1; // Enable interrupt for P2.1

__bis_SR_register(GIE); // Enable global interrupts

while (1)

{

P1OUT ^= LED1_PIN; // Toggle LED pin

P1SEL |= BIT2; // Pin 1.2 selected as PWM

TA0CCR0 = 1000000 / PWM_FREQUENCY1 - 1; // Update PWM period for

Tone 1

TA0CCR1 = (DUTY_CYCLE1 * TA0CCR0) / 1000; // Update PWM duty

cycle for Tone 1

delay_ms(50); // Delay for tick rate

P1SEL &= ~BIT2; // Pin 1.2 selected as PWM

P1OUT ^= LED1_PIN; // Toggle LED pin

// if ((BPM >= MAX_BPM) || (BPM <= MIN_BPM))

// {

// P6OUT &= LIMLED; // Make LED high

// }

delay_ms(TICK_RATE); // Delay for tick rate

int i;

for (i = 1; i < BEATS; ++i)

{

P4OUT ^= LED2_PIN; // Toggle LED pin

//P1OUT ^= BEEP_PIN; // Toggle BEEP pin

P1SEL |= BIT2; // Pin 1.2 selected as PWM

TA0CCR0 = 1000000 / PWM_FREQUENCY2 - 1; // Update PWM period

for Tone 2

TA0CCR2 = (DUTY_CYCLE2 * TA0CCR0) / 1000; // Update PWM duty

cycle for Tone 2

delay_ms(50); // Delay for tick rate

P1SEL &= ~BIT2; // Pin 1.2 selected as PWM

P4OUT ^= LED2_PIN; // Toggle LED pin

delay_ms(TICK_RATE); // Delay for tick rate

}

}

return 0;

}

#pragma vector = PORT1_VECTOR

__interrupt void Port1_ISR(void)

{

if (P1IFG & BIT1)

{ // Check if P1.1 triggered

if (BPM < MAX_BPM)

{ // Check if BPM is less than maximum BPM

BPM++; // Increase BPM by 1

}

}

P1IFG &= ~BIT1; // Clear P1.1 interrupt flag

}

#pragma vector = PORT2_VECTOR

__interrupt void Port2_ISR(void)

{

if (P2IFG & BIT1)

{ // Check if P2.1 triggered

if (BPM > MIN_BPM)

{ // Check if BPM is greater than minimum BPM

BPM--; // Decrease BPM by 1

}

}

P2IFG &= ~BIT1; // Clear P2.1 interrupt flag

}

